Membrantechnik

Daniel Bomze Paul Gauss Paul Kautny

28. 10. 2009

Inhaltsverzeichnis

1.	Aufgabenstellung	2
2.	Theoretische Grundlagen	2
2.1.	Arten von Membranen	2
2.2.	unterschiedliche Membrantrennverfahren	2
2.3. 2.3.1 2.3.2 3.	Modelle zur Beschreibung der Wanderung durch die Membran 1. Das Lösungs-Diffusionsmodell 2. Das Porenflussmodell Versuchsdurchführung	2 2 3
3.1.	Durchführung	4
3.2. 4.	Fliessbild Auswertung	6 7
4.1.	Messwerte	7
4.2.	Spezifischer Fluss	7
4.3.	Permeabilität	10
4.4.	Ideale Selektivität	12
4.5. 5.	Bestimmung der Temperaturabhängigkeit der Permeabilität Diskussion der Ergebnisse & Fehlerabschätzung	13 15
6.	Anhang	16
6.1.	Verzeichnis der verwendeten Formelzeichen und Symbole	16
6.2.	Abbildungsverzeichnis	17

1. AUFGABENSTELLUNG

Die Temperatur- und Druckabhängigkeit des Transmembranen Flusses durch eine Gaspermeationskapillarmembran sollte bestimmt werden. Dazu sollten bei drei vorgegebenen Temperaturen und vier vorgegebenen Drücken jeweils die Permeatströme gemessen werden.

Daraus sollte die Membranpermeabilität, die ideale Selektivität sowie die Temperaturabhängig der Permeabilität der Membran, die durch Formel nach Arrhenius beschrieben werden kann, berechnet werden.

2. THEORETISCHE GRUNDLAGEN

2.1. ARTEN VON MEMBRANEN

Membranen dienen dazu Komponenten auf Grund unterschiedlicher Rückhaltevermögen aufzutrennen. Es wird grundsätzlich zwischen porösen und nicht porösen Membranen unterschieden.

Prinzipiell spricht man ab einer mittleren Porengröße kleiner 1 nm von einer nicht porösen Membran.

Über die Membran wird folgender Maßen bilanziert

$$\dot{F} = \dot{P} + \dot{R}$$

Formel 1

Für eine einzelne Komponenten gilt dabei:

$$\dot{F} \cdot x_{i,F} = \dot{P} \cdot x_{i,P} + \dot{R} \cdot x_{i,R}$$

Formel 2

2.2. UNTERSCHIEDLICHE MEMBRANTRENNVERFAHREN

Man unterscheidet die Membrantrennverfahren nach der treibenden Kraft, die der Trennung zugrunde liegt, in:

Druckgetriebene Prozesse (Mikrofiltration, Ultrafiltration, Nanofiltration, Umkehrosmose, Oberflächenfiltration)

Konzentrationsgetriebene Prozesse (Gastrennung, Pervaporation, Dialyse) Thermisch getriebene Prozesse (Membrandestillation, Thermoosmose) Elektrisch getriebene Prozesse (Elektrodialyse, Elektrofiltration)

2.3. MODELLE ZUR BESCHREIBUNG DER WANDERUNG DURCH DIE MEMBRAN 2.3.1. Das Lösungs-Diffusionsmodell

Dieses Modell ist für alle nicht porösen Membranen anwendbar, dabei wird die Membran als homogenes Polymer angenommen, in dem sich die Komponenten wie in einer Flüssigkeit lösen und durch Diffusion fortbewegen. Die Permeabilität ist dabei abhängig von der Lösungs-Diffusions-Beweglichkeit der Komponenten und von der treibenden Kraft.

$$j_i = c_{i,M} \times grad \ \mu_i$$

Formel 3

2.3.2. DAS PORENFLUSSMODELL

Bei porösem Membranstrukturen stellt ein Strömugsmodell durch Schüttungen einen realistischen Vergleich dar. Dabei wird angenommen dass die Flüssigkeit durch eine große Anzahl voneinander abgeschlossenen Poren, statt gleichmäßig um die Schüttgutteilchen herum, fließt. Dadurch kann man den Druckverlust mit dem von zylindrischen Rohren vergleichen und es ergibt sich nach der Hagen-Poisseuille-Gleichung

$$j = \frac{n_p \times \rho \times \pi \times r_p^4 \times \Delta p}{8 \times \eta \times \Delta L}$$
Formel 4

Es zeigt sich dass der Porendurchmesser einen gewaltigen Effekt auf den Fluss hat.

3. VERSUCHSDURCHFÜHRUNG

3.1. DURCHFÜHRUNG

Abbildung 1 Die Versuchsanordnung inkl. Beschrifteten Bauteilen

Die Ventile zu der Gasflasche wurden geöffnet und es wurde am Reduzierventil ein Druck von rund 3 bar eingestellt. Das Ventil an der Retentatseite wurde geöffnet, um so eine Spülung der Anlage mit dem Gas zu ermöglichen.

Währenddessen wurde das System aufgeheizt, wobei, um ein schnelleres Aufheizen zu erzielen, die Regeltemperatur immer rund 4 °C über dem Sollwert gehalten wurde. Erst bei Erreichen der Soll-Temperatur, wurde die Regeltemperatur verringert.

Nachdem das System 5 Minuten gespült wurde, wurde das Retentatseitige Ventil geschlossen, worauf der Feeddruck vor dem Membranmodul augenblicklich anstieg. Der Ventilator wurde eingeschaltet, um eine bessere Durchmischung der Luft im Versuchsaufbau zu gewährleisten. Anschließend wurde das Plexiglasschild befestigt.

Nachdem die Temperatur die Solltemperatur erreicht hatte, wurde der Druck auf den niedrigsten Feeddruck eingestellt.

Nachdem der Mass-Flow-Controller einen konstanten Wert angezeigt hat, wurde dieser notiert und der Druck auf den nächsthöheren Sollwert eingestellt.

Die Druck und Temperaturwerte, die eingestellt wurden sind folgender Tabelle zu entnehmen

Temperatur [°C]	Feeddruck [bar]
30	1,8
30	2,2
30	2,9
30	3,3
32	1,8
32	2,2
32	2,9
32	3,3
36	1,8
36	2,2
36	2,9
36	3,3

Tabelle 1 Feeddruck und Temperaturwerte während der Messung mit Sauerstoff und Stickstoff

Nachdem die Messserie für Stickstoff beendet wurde, wurde das System abgekühlt und für 5 Minuten mit Sauerstoff gespült. Anschließend wurden die Messungen, wie oben beschrieben, für Sauerstoff wiederholt.

Nach den beiden Messserien wurde der Überdruck aus dem System abgelassen und die Flaschenventile geschlossen.

3.2. FLIESSBILD

4. AUSWERTUNG

4.1. MESSWERTE

Die erhobenen Messwerte wurden in nachfolgender Tabelle zusammengefasst. Da das Barometer permeatseitig auch ohne Fluss einen Druck von 40 mbar anzeigte, wurde der permeatseitige Druck um diesen Faktor korrigiert.

Gas	T [°C]	p, [bar]	p, [mbar]	p _p (korr.) [mbar]	P [%]	P [Nml/min]
		p; []	Pp[[]	. [,•]	[,.]
N ₂	30	1,8	49	9	9,9	19,8
		2,2	51	11	12,4	24,8
		2,9	57	17	16,2	32,4
		3,3	60	20	18,6	37,2
	32	1,8	49	9	9,9	19,8
		2,2	51	11	12,2	24,4
		2,9	58	18	16,6	33,2
		3,3	61	21	19,2	38,4
	36	1,8	50	10	10,6	21,2
		2,2	51	11	12,7	25,4
		2,9	59	19	17,5	35,0
		3,3	63	23	20,3	40,6
O ₂	30	1,8	140	100	47,2	93,5
		2,2	190	150	60,7	120,2
		2,9	285	245	81,1	160,6
		3,3	492	452	90,2	178,6
	32	1,8	150	110	49,4	97,8
		2,2	210	170	65,4	129,5
		2,9	325	285	85,4	169,1
		3,3	600	560	90,2	178,6
	36	1,8	161	121	53,6	106,1
		2,2	219	179	67,1	132,9
		2,9	330	290	88,5	175,2
		3,3	610	570	90,2	178,6

Tabelle 2

4.2. Spezifischer Fluss

Da die Ausgabe des Flusses durch den MFC in % erfolgte, musste dieser Wert auf einen Volumenstrom umgerechnet werden. Aus den oben ermittelten Messwerten lässt sich mit Formel 5

der transmembrane Fluss J_i berechnen. Daraus ergibt sich, bezogen auf die aktive Membranfläche A_M den spezifischen transmembranen Fluss j_i (Formel 6).

$$J_{i} = \dot{P}_{\%} \cdot 2 \frac{N \cdot ml}{min}$$
Formel 5
$$j_{i} = \frac{J_{i}}{A_{m}}$$
Formel 6

Die Membranfläche wurde nach Formel 7 berechnet. Der Innendurchmesser der verwendeten Kapillaren betrug 200µm.

Gas	T [°C]	Δp [mbar]	i_{02} [Nm ³ /(m ² h)
Na	30	1791	0.0169
	30	2189	0.0212
	30	2883	0.0276
	30	3280	0,0317
	32	1791	0,0169
	32	2189	0,0208
	32	2882	0,0283
	32	3279	0,0328
	36	1790	0,0181
	36	2189	0,0217
	36	2881	0,0299
	36	3277	0,0346
02	30	1700	0,0797
	30	2050	0,1025
	30	2655	0,1370
	30	2848	0,1524
	32	1690	0,0835
	32	2030	0,1105
	32	2615	0,1443
	32	2740	0,1524
	36	1679	0,0905
	36	2021	0,1134

$$A_M = d \cdot \pi \cdot l \cdot n_k$$
Formel 7

0,1495

2610

36

Abbildung 4 Graphische Darstellung des spezifischen transmembranen Flusses in Abhängigkeit der Temperatur T

4.3. PERMEABILITÄT

Die Permeabilität P der Membran wurde nach Gleichung 8 berechnet. Da die Werte für die Permeabilität in SI-Einheiten sehr unhandlich sind wurden sie in die Dimension *barrer* umgerechnet. Dafür gilt 1 [barrer] = $1,333 * 10^{17}$ [Nm³ * m / (m²*s*Pa)]

$$P_i(T) = \frac{J_i \times \delta}{A_M \times (\bar{P}_{i,F} - \bar{P}_{i,P})}$$

Formel 8

Gas	T [°C]	Δp [mbar]	P [Nm ³ *m/(m ^{2*} s*Pa)	P [barrer]
N ₂	30	1791	6,55E-18	0,87
	30	2189	6,71E-18	0,89
	30	2883	6,66E-18	0,89
	30	3280	6,72E-18	0,90
	32	1791	6,55E-18	0,87
	32	2189	6,60E-18	0,88
	32	2882	6,83E-18	0,91
	32	3279	6,94E-18	0,93

	36	1790	7,02E-18	0,94
	36	2189	6,87E-18	0,92
	36	2881	7,20E-18	0,96
	36	3277	7,34E-18	0,98
O ₂	30	1700	3,26E-17	4,34
	30	2050	3,47E-17	4,63
	30	2655	3,58E-17	4,78
	30	2848	3,72E-17	4,95
	32	1690	3,43E-17	4,57
	32	2030	3,78E-17	5,04
	32	2615	3,83E-17	5,11
	32	2740	3,86E-17	5,15
	36	1679	3,75E-17	4,99
	36	2021	3,89E-17	5,19
	36	2610	3,98E-17	5,30
	36	2730	3,88E-17	5,17

Tabelle 4 Permeabilitätswerte der Membran für Stickstoff und Sauerstoff bei den gegebenen Temperatur- und Druckwerten

Abbildung 5 Graphische Darstellung der Permeabilität der Membran für Sauerstoff und Stickstoff im Intervall 30-36 °C

4.4. IDEALE SELEKTIVITÄT

Die ideale Selektivität errechnet sich wie in Formel 9 beschrieben. Dabei wurden für die leichter durch die Membran durchtretende Komponente P_i die Werte für Sauerstoff und für die schwerer durchtretende Komponente P_j die Werte für Stickstoff eingesetzt.

$$\alpha_{id,ij}(T) = \frac{P_i(T)}{P_j(T)}$$

Formel 9

p _f [bar]	T [°C]	α _{id,O2N2}
1,8	30	4,97
	32	5,24
	36	5,34
2,2	30	5,17
	32	5,72
	36	5,67
2,9	30	5,38
	32	5,61
	36	5,53
3,3	30	5,53
	32	5,57
	36	5,28

Tabelle 5 berechnete Werte der idealen Selektivität für bei verschiedenen Temperaturen und Drücken

Membrantechnik

Abbildung 6 Graphische Darstellung der idealen Selektivität in Abhängigkeit der Temperatur T im Intervall 30-36 °C

4.5. Bestimmung der Temperaturabhängigkeit der Permeabilität

Trägt man die logarithmierten Werte der Permeabilität gegen die reziproke Temperatur auf, so kann man aus der Steigung und dem Achsenabschnitt die Aktivierungsenergie und das P₀ nach Arrhenius berechnen. Die formelmäßige Darstellung dieses Zusammenhangs ergibt sich aus Gleichung 10.

$$P_i = P_{i,0} \cdot e^{\frac{-\Delta E_i}{R \cdot T}}$$
Formel 10

Stoff	Т [°С]	1/T [1/°C]	ln(P)
N ₂	303	0,00330	-0,12
	305	0,00328	-0,09
	309	0,00324	-0,04
O ₂	303	0,00330	1,56
	305	0,00328	1,63
	309	0,00324	1,67

Tabelle 6 Parameter der Arrheniusgleichung

Membrantechnik

Abbildung 7 Ermittlung von d und k

Die d- und k-Werte wurden aus den Regressionsgeraden aus Abb. 7 entnommen. Daraus wurden ΔE und P₀ berechnet.

	d	k	ΔΕ [kJ]	P₀ [barrer]
N ₂	3,908	-1220	10,1	49,80
02	6,614	-1526	12,7	745,46

Tabelle 7 Bestimmte Aktivierungsenergien sowie die Permeabilität (für T $\rightarrow \infty$) für Sauerstoff und Stickstoff

5. DISKUSSION DER ERGEBNISSE & FEHLERABSCHÄTZUNG

6. ANHANG

6.1. VERZEICHNIS DER VERWENDETEN FORMELZEICHEN UND SYMBOLE $A \dots Fl$ äche $[m^2]$

 $E \dots Aktivierungsenergie \left[\frac{J}{mol}\right]$ $F \dots Feedstrom \left[\frac{kg}{s}, \frac{kg}{h}, \frac{Nm^3}{s}, \frac{mol}{h}, \frac{mol}{s}\right]$ J ... transmembraner Fluss $j \dots spezifischer Fluss \left[\frac{kg}{m^2s}\right]$ \dot{P} ... $Permeatstrom[\frac{kg}{s}, \frac{kg}{h}, \frac{mol}{s}, \frac{mol}{h}, ...]$ $P \dots Permeabilit at[\frac{Nm^3 \cdot m}{m^2 \cdot s \cdot Pa}]$ \dot{R} ... Retentatstrom $\left[\frac{kg}{s}, \frac{kg}{h}, \frac{mol}{s}, \frac{mol}{h}, \dots\right]$ $R \dots Gaskonstante[\frac{J}{mol \cdot \kappa}]$ T ... Temperatur [K] d ... Innendurchmesser der Kappilare [m] n_k ... Anzahl der Kappilaren [] l... aktive Phaserlänge [m] p ... Druck[Pa] x ... Molenbruch [] *α* ... *Trennfaktor* [] α_{id} ... ideale Selektivität [] δ ... Dicke der selektiven Membranschicht [m] θ ... Schnittverhältnis [] r_p ... Porenradius [m] δ ... Dichte $\left[\frac{kg}{m^3}\right]$ $\eta \dots Viskosität \left[\frac{kg}{m \cdot s}\right]$ n_p ... Porenanzahl [] ΔL ... Dicke der Membran[m] L_i ... Permeabilitätskonstante

grad μ_i ... Gradient vom chemischen Potential der Komponente in der Membran

6.2. Abbildungsverzeichnis

Abbildung 1 Die Versuchsanordnung inkl. Beschrifteten Bauteilen	4
Abbildung 2 Fließbild der Versuchsanlage	6
Abbildung 3 Graphische Darstellung des spezifischen transmembranen Flusses	9
Abbildung 4 Graphische Darstellung des spezifischen transmembranen Flusses	. 10
Abbildung 5 Graphische Darstellung der Permeabilität der Membran	. 11
Abbildung 6 Graphische Darstellung der idealen Selektivität in	. 13
Abbildung 7 Ermittlung von d und k	. 14